Heeft u vragen? U kunt ons ook bellen op tel: 0318-695315

iVRI specificaties
Deze tekst is gepubliceerd op 20-09-21

16 IDD UDAP-FI

Datum besluit SC 08-11-2022
D3047-16 / Version 1.0.1
Disclaimer (NL):
Bij het gebruik en toepassen van de Landelijke iVRI standaarden® is en blijft de gebruiker, te weten de wegbeheerder respectievelijk opdrachtnemer van de wegbeheerder, zelf aansprakelijk voor de mogelijke risico’s die ontstaan of kunnen ontstaan uit het aanbieden of laten aanbieden van (combinaties van) diensten en producten die conform deze standaarden werken in de eigen organisatie of elders in de keten waarvoor de wegbeheerder verantwoordelijk is. Dit geldt in het bijzonder ten aanzien van het verzamelen, opslaan en delen van gegevens en meer specifiek indien daar waar al dan niet direct of indirect herleidbare persoonsgegevens worden verwerkt op grond van de AVG. Gebruikers zijn zelf verantwoordelijk om bij het gebruik van de standaarden telkens na te gaan of gebruik van standaarden, dan wel de combinatie van data vanuit de standaarden in de basis voldoet aan de wet- en regelgeving, in het bijzonder de AVG. Het gebruik conform de standaarden kan het risico op aansprakelijkheid van de wegbeheerder verkleinen, maar niet altijd wegnemen of geheel uitsluiten. Dit is mede afhankelijk van de wijze waarop de wegbeheerder zelf in haar eigen organisatie of bij gebruik van opdrachtnemers in de keten de data verwerkt en gebruikt. Het is dan ook een dringend advies zowel voorafgaand aan de implementatie en ingebruikname door de gebruiker van de standaarden als periodiek een risico-analyse (zoals Data Protection Impact Assessment (DPIA)) en controle van de keten op het gebruik van de standaarden en bijkomende individuele risico’s bij de wegbeheerder en haar opdrachtnemers uit te laten voeren. Het doel van dergelijke analyses en controles is dat mogelijke risico’s die onbedoeld kunnen optreden op voorhand geïdentificeerd kunnen worden, zodat de wegbeheerder zelf de nodige beheersmaatregelen kan treffen om (alsnog) aan de wettelijke voorschriften te kunnen voldoen. CROW en de opstellers van de standaarden hebben deze documenten met de grootst mogelijke zorg en met aandacht opgesteld, maar kunnen geen aansprakelijkheid aanvaarden voor een mogelijke overtreding van wet- en regelgeving door de wegbeheerder respectievelijk opdrachtnemer van de wegbeheerder, door te verwijzen naar de standaarden als oorzaak van een mogelijke overtreding van de AVG of andere wettelijke voorschriften. CROW en de opstellers van de standaarden wijzen derhalve een aansprakelijkheid door gebruikers ten aanzien van het gebruik van de standaarden Landelijke iVRI standaarden® van de hand.
Disclaimer (EN):
When using and applying the Landelijke iVRI standaarden® the end user, being the road authority or its principal, remains solely responsible for the possible risks that emerge or can emerge from the provision of services and products that operate by these standards, either within the own organisation or elsewhere in the chain of the road authority’s responsibility. This especially applies to the activities where data is gathered, stored and shared, and more specifically in cases where, be it directly or by inference, private data of individuals are processed, based on the GDPR and/or its national implementation. The user of these standards are themselves responsible for ascertaining that either the use of these standards, or the combination of data that is processed from applying these standards, are legal, especially in terms of the GDPR and/or its national implementation. The use of these standards can reduce the risks for liability of road users, but they can not eliminate these risks; the beforementioned risks of violating privacy legislation are mainly dependent on the way in wicht the road authority uses and processes the data within the own organisation and in relation to contractors within the chain of responsibility. It is urgently advised that, not alone when preparing a project, but also when implementing and operating a service or product, the road authority performs a periodic risk analysis (like a Data Protection Impact Assessment (DPIA)) and a check on the whole chain of information in terms of compliance to standards and additional individual risks on behalf of the road authority and its contractors. The purpose of these analyses and checks is to identify the possible risks beforehand, in order to take preventive and controlling measures, so that the road authority (eventually) is compliant to the legal framework that is applicable. CROW and the authors of these standards have created this document with the utmost care, but will not accept liability for a possible violation of any legislation by the road authority or its contractors by referring to these standards as the root cause of a possible violation of the GDPR, its national implementation or any other legal prescription. CROW and the authors of the Landelijke iVRI standaarden® therefore explicitly waive all responsibility for the use of these standards.
Voorwoord
Met de landelijke publiek private standaarden voor iVRI’s uit 2016 is de afgelopen jaren veel ervaring opgedaan. Enkele van deze standaarden waren al op onderdelen aangescherpt. Eind 2020 is besloten tot een integrale zogenaamde consolidatieslag op al deze standaarden. Met als doel om o.b.v. de opgedane ervaringen en inzichten de ontwikkeling, configuratie, werking en het beheer van (diensten in) de gehele dataketen eenvoudiger en betrouwbaarder te maken. Dit betreft niet alleen standaarden voor iVRI’s, maar ook landelijke afspraken en standaarden over data die cloud service providers aanleveren aan en afnemen van iVRI’s.
Grotere aanpassingen, zoals iVRI security, herziening van beheerinterfaces, ketenbeheer en functionele doorontwikkelingen van diensten (use cases), zijn buiten deze consolidatieslag gehouden en zullen nadien stapsgewijs moeten worden opgepakt. In die zin zal doorontwikkeling van (diensten in) de dataketen doorgaan.
Het voorliggende CROW document is vastgesteld door de landelijke publiek private Strategic Committee en omvat een van de landelijke publiek private iVRI CROW standaarden die is geactualiseerd als onderdeel van de Consolidatie. Aan de actualisatie hebben deskundigen van bedrijven, zowel leveranciers van hardware en software voor iVRI’s als cloud service providers, en overheden actieve bijdragen geleverd. Zoals altijd het geval is bij landelijke standaardisatie, was het niet mogelijk om met de resulterende specificaties en standaarden volledig recht te doen aan alle soms uiteenlopende visies, meningen en standpunten. Door het gevolgde landelijke publieke private proces via de Change Advisory Board en de Strategic Committee zijn al deze visies, meningen en standpunten wel gehoord en gewogen.
De volgende bedrijven hebben actieve bijdragen geleverd aan de iVRI CROW standaarden (in alfabetische volgorde):
  • Be-Mobile
  • Dynniq
  • KPN
  • Monotch
  • RHDHV
  • Siemens Nederland
  • Siemens België
  • Swarco
  • Sweco
  • Van Grinsven software
  • Vialis
Vanuit alle landsdelen hebben overheden actieve bijdragen geleverd aan de landelijke iVRI CROW standaarden, te weten de landsdelen Noord, Noordwest, Oost, Zuid en Zuidwest. Daarnaast hebben het Vlaamse Agentschap Wegen en Verkeer, het ministerie van Infrastructuur en Milieu en Rijkswaterstaat actieve bijdragen geleverd.
Dank gaat uit naar allen voor deze bijdragen.
Verdere gewenste aanpassingen en doorontwikkeling van de nu voorliggende standaarden zal plaatsvinden via het daartoe ingerichte landelijke proces via Change Advisory Board en Strategic Committee.
NB. De rest van dit document is geschreven in het Engels om internationale uitwisseling te ondersteunen.
The rest of this deliverable has been written in English to facilitate international exchange..
Publication level: Public
Version filename: D3047-16_IDD UDAP-FI_0.0.0.pdf
Contents
Voorwoord
Contents
1 – Introduction
1.1 – Overview
1.2 – Version
1.3 – Purpose and scope
1.4 – Advice for the reader
2 – References
3 – Acronyms, abbreviations and concepts
4 – Functional description
4.1 – General
4.2 – UDAP documentation
4.3 – Message profiles
4.4 – Message frequencies
4.4.1 – MAP frequency
4.4.2 – SPaT frequency
4.4.3 – SRM frequency
4.4.4 – SSM frequency
4.4.5 – CAM frequency
4.5 – Message transmission requirements
4.5.1 – General
4.5.2 – MAP transmission requirements
4.5.3 – SPAT transmission requirements
4.5.4 – SRM transmission requirements
4.5.5 – SSM transmission requirements
4.5.6 – CAM transmission requirements
4.6 – iTLC configuration information
5 – Functional use-cases
5.1 – Configuration information provisioning by RIS
Annex: limitations related CAM and SRM transmission requirements
1 Introduction
1.1 Overview
This document describes the interface specific details for exchange of data with the Urban Data Access Platform (UDAP). The purpose of UDAP is to facilitate the communication between Intelligent Traffic Light Controllers (iTLC) and (cloud) service providers.
1.2 Version
This document describes the protocol version 1.0.1 of the UDAP-FI.
1.3 Purpose and scope
This document describes the interface design of UDAP-FI. .
  • Please refer to the Dutch profile [REF090], [REF091], REF092], [REF093] and [REF094] for the specification of the messages (MAP, SPAT, CAM, SRM, SSM and TLCConf).
  • Please refer to the UDAP specification [REF070], [REF071], [REF072] and [REF073] for details on UDAP.
This document describes the UDAP-FI as the interface between a RIS and UDAP and a Service Provider and UDAP. This specification also applies to a deployment where an ITS-CLA connects directly to UDAP (using UDAP-FI).
Requirements in this document apply to UDAP clients and brokers for the transmission of messages. Clients and/or brokers must implement appropriate processes to meet these requirements. These processes are subject to test and verification as part of the national certification procedure.
1.4 Advice for the reader
The reader is assumed to be familiar with the iTLC architecture as described in [REF060], the Dutch profile and the UDAP specification.
Background information and known limitations related to CAM (and SRM) transmission is provided in the Annex of this document.
2 References
A complete list of references for the iTLC standards, specifications and profiles is published in D30xx: References for the iTLC standards.
3 Acronyms, abbreviations and concepts
Acronyms and abbreviations
CAM
Cooperative Awareness Messages
DENM
Decentralized Environmental Notification Messages
SPAT
Signal Phase And Timing messages
MAP
MapData messages
SRM
Signal Request Messages
SSM
Signal Status Messages
TLCConf
iTLC Configuration data messages
RIS
Roadside ITS Station
TLC
Traffic Light Controller; controls the signalling of one or more intersections
ITS-CLA
Traffic Control Application
IVI
In Vehicle Information messages
UDAP
Urban Data Access Point
UDAP-FI
UDAP Facilities Interface
Concepts
SRM0
Vehicles approaching an intersection can share route information via the a so-called SRM0 message.
4 Functional description
4.1 General
The UDAP Facilities Interface (UDAP-FI) enables transmission and reception of ITS messages by clients and brokers of UDAP.
Currently the following messages are supported:
  • Cooperative Awareness Messages (CAM), which contain information about the ITS stations such as type, position, speed etc.
  • Signal Phase And Timing (SPAT) messages, which contain information on the status of a traffic light controller and its signal groups at an intersection.
  • MapData (MAP) messages, which contain the topology of the area associated with the RIS.
  • Signal Request Messages (SRM), which are sent by a vehicle to the RIS to request priority at a signalized intersection.
  • Signal Status Messages (SSM), which are sent by a RIS to inform vehicles about the status and activation of previously made prioritization requests.
  • Configuration Data Messages (TLCConf), which are sent by a RIS to inform UDAP about product and version information of the iTLC components (TLC, RIS and ITS-CLA).
Currently the following message are not supported:
  • Decentralized Environmental Notification Messages (DENM), which contains information about the occurrence of potential dangerous (traffic) situations.
  • In Vehicle Information (IVI) messages, which contain signage information; e.g. speed limits, traffic signs etc.
4.2 UDAP documentation
Deployment details of the Urban Data Access Point (UDAP) platform is provided in the following CROW publications:
  • D3047-11 UDAP Deployment
  • D3047-17 C-ITS-BROKER-SYSTEM
  • D3047-18C-ITS-BROKER-ADMIN
  • D3047-19C-ITS-MONITOR-SYSTEM
  • D3047-20C-ITS-MONITOR-ADMIN
  • D3047-21 C-ITS-SUBJECT- SYSTEM-VLOG
  • D3047-22 C-ITS-SUBJECT-SYSTEM
  • D3047-23 C-ITS-SUBJECT- ADMIN
4.3 Sharing route information of non-priority vehicles
Vehicles approaching an intersection can share route information via the a so-called SRM0 message.
The SRM0 message content and message handling is specified in paragraph 5.5.
4.4 ITS-CLA connected to UDAP (without a RIS)
The iTLC architecture supports a deployment where an ITS-CLA communicates directly with UDAP (without a RIS) using UDAP-FI. It is assumed that an ITS-CLA that is connected to UDAP behaves identical on UDAP-FI as a RIS behaves on UDAP-FI.
UDAP supports only one UDAP-FI connection per iTLC. Therefore an ITS-CLA shall only connect to UDAP when it is the active ITS-CLA (i.e. the ITS-CLA that is controlling the intersection). The ITS-CLA shall disconnect from UDAP when it is not the active ITS-CLA.
4.5 Configuration data
The manufacturer name, product name and version as listed on the iTLC certificates of the active iTLC components (TLC, RIS, ITS control application) shall be forwarded to UDAP. The use case is described in $6.1 Configuration information provisioning by RIS.
5 Message requirements
5.1 Message profiles
Transmitted messages must adhere to message profiles which are provided in the following CROW publications:
  • D3046-1 MAP data, Dutch profile
      -ASN1 specification: https://forge.etsi.org/rep/ITS/asn1/is_ts103301/-/tree/v1.3.1
  • D3046-2 SpaT data, Dutch profile
      -ASN1 specification: https://forge.etsi.org/rep/ITS/asn1/is_ts103301/-/tree/v1.3.1
  • D3046-3 SRM data, Dutch profile
      -ASN1 specification: https://forge.etsi.org/rep/ITS/asn1/is_ts103301/-/tree/v1.3.1
  • D3046-4 SSM data, Dutch profile
      -ASN1 specification: https://forge.etsi.org/rep/ITS/asn1/is_ts103301/-/tree/v1.3.1
  • D3046-5 CAM data, Dutch profile
      -ASN1 specification: https://forge.etsi.org/rep/ITS/asn1/cam_en302637_2/-/tree/v1.4.1
  • D3046-11 TLCConf data, Dutch profile
      -ASN1 specification: see Annex B.
Currently the following messages are not supported:
  • D3046-6 DENM data, Dutch profile
  • D3046-7 IVI data, Dutch profile
5.2 MAP
MAP data shall be transmitted:
  • Upon connection.
  • On change.
  • At regular intervals (1..24 hours).
5.3 SPAT
SPAT data shall be transmitted:
  • on change with a maximum frequency of 10Hz.
  • at least once every 10 seconds (i.e. retransmit in case SPAT data has not changed).
The timing included in the SPAT data shall be verified by the Prediction Verification Logic described in [REF060, paragraph 7.1 Signal state and timing].
The event state for abnormal lights is specified [REF060 Paragraph 7.2 Abnormal lights].
5.4 SRM
Please refer to [REF076] for the functional use cases for priority services.
5.5 SRM0
The SRM0 message is used to convey the planned route of an ItsStation on a signalized intersection. The planned route consists of one or, in case of multiple intersections, of more connections.
A SRM0 message shall be sent as soon as possible once the vehicle is within a 120 seconds distance from the stop line. A SRM0 message shall be preceded by a CAM message to assure that the receiving RIS can relate the SRM message to the corresponding CAM message.
Note: The SRM0 message uses the format of a SRM message but is not actually a SRM message.
5.5.1 SRM0 message processing
An ItsStation with a known route, approaching a signalized intersection sends a SRM0 message in additional to CAM messages.
The RIS shall not send a Signal Status Message (SSM) as response to a SRM0 message.
The RIS shall remember the planned route of an ItsStation until:
  • A new SRM0 message is received for the ItsStation, or
  • The ItsStation no longer exists in the RIS.
The RIS shall ignore the SRM0 message:
  • When there is no matching CAM data.
5.5.2 SRM0 message content
The content of the SRM0 message is defined below.
Level
Field
Status
Value
h.1
protocol-Version
Fixed
2
h.2.
messageID
Fixed
9
h.3.
stationID
Mandatory
Same as CAM
0.1
timestamp [MinuteOfTheYear]
Mandatory
0.2
second [Dsecond]
Mandatory
0.3
sequenceNumber [MsgCount]
Mandatory
2.1
region [RoadRegulatorID]
Mandatory
2.1
Id [IntersectionID]
Mandatory
2.2
requestID [RequestID]
Fixed
0
2.3
requestType [PriorityRequestType]
Fixed
priorityRequestTypeReserved (0)
2.4
connection [LaneConnectionID]
Mandatory
3.1
stationID [StationID]
Mandatory
Same as CAM
3.4
name [Descriptive-Name]
Fixed
SRM0
4.1
role [BasicVehicleRole]
Fixed
default(0)
4.2
subrole [RequestSubRole]
Fixed
requestSubRoleUnKnown (0)
4.3
request [RequestImportanceLevel]
Fixed
requestImportanceLevelUnKnown (0)
5.6 SSM
Please refer to [REF076] for the functional use cases for priority services.
5.7 CAM
CAM data shall be transmitted:
  • When the CAM data is relevant for the iTLC.
  • With a maximum frequency of 10Hz.
  • With a minimum frequency of 0.1Hz (i.e. once per 10 seconds).
  • With a frequency of 1Hz for vehicles on the MAP.
5.7.1 Relevant CAM data
  • For (non priority) vehicles (including cyclist and pedestrians) the CAM data is relevant:
  • If the vehicle is expected to reach intersection within 120 seconds (under free flow conditions).
  • If the current location overlaps with a lane that is accessible to the vehicle type or is within the conflict area of the MAP.
Under the following conditions the CAM data shall not be send to the iTLC:
  • If the vehicle is stationary for more than 15 minutes.
  • If the vehicle can only be mapped on a lane(s) where the vehicle type is not allowed.
  • If the vehicle is marked invalid.
  • If CAM data is being simulated, unless explicitly authorized by the road authority.
For vehicles requesting priority please refer to [REF076].
Stationary
If the positions of a vehicle overlap within the (varying) GPS accuracy, the vehicle is considered stationary until a displacement greater than the GPS accuracy is detected.
  • Invalid
Under the following conditions a vehicle shall be marked as invalid:
  • If the timestamp is older than 2s, or more than 500ms in the future.
  • If the vehicle type changes during a trip.
  • If the instantaneous speed or acceleration is higher than plausible for the stated and/or known vehicle characteristics of the user (e.g. 50 km/h for a cyclist).
  • If the average speed between 2 consecutive points of a vehicle is higher than plausible for the specified vehicle characteristics.
  • If the location data comes from the 2nd, 3rd.. nth device in the same vehicle. If in this case one of the devices is an professional device to request priority, this device should always be marked as valid.
A vehicle that is marked invalid shall remain invalid until the data is continuously valid for at least 2 minutes.
Prevention of spoofing
C2/C3 must prevent simulated data from being passed on to iTLCs within the production domain, unless it concerns simulated trips by road authorities. Examples of possible ways to detect spoofing are:
  • Using functions in the platform (of the device) to detect or block simulated position data shall be used (e.g. standard on Android).
  • If the location data is collected on a device in which data from an accelerometer, gyroscope and/or electronic compass is also available, then illogical data combinations shall be examined, such as:
      -GNSS receiver indicates motion, while accelerometer does not indicate any vibration or acceleration.
      -The heading of the GNSS receiver deviates more than 30 degrees from the direction of the electronic compass.
      -Changes in the heading of the GNSS receiver do not match the heading changes registered by the gyroscope.
5.7.2 Accuracy
The data frame positionConfidenceElipse shall be used to convey inherent uncertainties in the data.
This data frame enables entering 2 values, while a GPS device usually only returns 1 value. The semiMinorConfidence shall be used for transmission of the accuracy as provided by the GPS, whereby the value 'unavailable' is not allowed. If only the semiMinorConfidence is provided the positionConfidenceEllipse has the shape of a circle as shown in the figure below. In addition, the semiMajorConfidence and the semiMajorOrientation can be used to report the deviation estimated by the service provider. In this case the semiMinorConfidence and semiMajorConfidence together create the ellipse shape as is intended by the standard. Note that the major axis can be shorter than the minor axis. The semiMajorOrientation (indicated by Azimuth in the figure below) serves two purposes: one being to indicate the orientation (rotation) of the ellipse, whereas the other is to indicate the location as estimated by the service provider. The delta between the service provider estimated location and the location of the GPS device is equal to the length of the major axis, and specifically in the direction indicated by the semiMajorOrientation (the green dot in the figure below). If the service provider cannot determine a good estimate of the deviation, these fields should be set to unavailable.
[ link ]

Figure 1. Schematic of usage of positionConfidenceEllipse

Note: Android provides 68% accuracy data by default (1 standard deviation) and must therefore be multiplied with factor 2 to meet the ETSI definition (95% corresponds to 2 standard deviations).
5.7.3 Stabilized heading
At very low speeds ( 5 km/h) or standstill, speed and heading sometimes show random behaviour, making map matching difficult. In this situation a stabilized heading is shall be delivered, appropriate to the assumed vehicle motion or heading.
5.7.4 Load reduction
The following logic shall be applied to reduce bandwidth and to save battery power:
  • In case of constant velocity (+/- 5 km/h) the frequency shall be halved to a minimum of 0.1Hz.
  • In case of velocity changes >5km/h, the frequency shall be doubled to a maximum of 1Hz.
  • In case of velocity changes >10km/h, updated CAM data shall be transmitted immediately, and the frequency shall be reset to 1Hz.
  • In case the heading changes >45 degrees, updated CAM data shall be transmitted immediately.
  • In case the in-vehicle device battery capacity is 33% and the device is not charging, all frequencies shall be halved to a minimum of 0.1Hz.
6 Functional use-cases
This section contains the use-cases describing the functional behaviour of the entities communicating over the UDAP-FI interface.
6.1 Configuration information provisioning by RIS
Name
Configuration information provisioning by RIS
Description / context
Provisioning of TLC, active ITS-CLA and RIS configuration information towards UDAP.
Actor
RIS, UDAP
Goal
The UDAP has/knows the configuration information of the active iTLC components (TLC, ITS-CLA and RIS).
Pre-condition(s)
UDAP-FI connection established between RIS facilities and UDAP.
Trigger
Change of configuration information data
RIS functions
When an update of the configuration information is received from an ITS-CLA
Send TLCConf message.
See [REF100] for detailed information of the TLCConf message.
UDAP functions
When an update of the configuration information is received, UDAP stores this update in its SystemAdministration. Every new update overwrites the previously received update of the configuration information.
Post-conditions
n/a
Exception 1
UDAP-FI connection is not available
When the UDAP-FI connection is established the available configuration information shall be forwarded as a TLCConf message to UDAP.
Exception 2
TLC configuration information is unknown
Older versions of the TLC do not provide configuration information.
The TLCConf message shall contain an empty entry for the TLC (i.e. empty string for product and version).
End result
The configuration information of the connected iTLC components TLC, active ITS CLA and RIS is stored in de SystemAdministration of UDAP.
Annex A: Limitations related CAM and SRM transmission requirements
Raw GPS/Galileo location data often deviates from the actual location due to technical reasons (including reflection of the signal in urban environments, interference by signals at a close frequency, influence of magnetic fields from the sun, etc.) This is inherent to the measurement method. As a result, the accuracy with which the vehicle location can be determined in urban environments for common equipment such as smartphones and in-car navigation systems is usually not better than 5 to 10 meters. Moreover, the location (provided by the GPS) also turns out to be delayed due to these causes. GPS systems give an indication of the reliability of the position determination, but it is currently not used in the chain, so that all data is handled uniformly. By sharing information about uncertainties, both on the basis of the information from the GPS and on the basis of the map matching at the service providers, there are opportunities to make location-specific and data quality-related choices at iTLC level and, in the long term, also to improve positioning stimulates: a vehicle with very good positioning is included in the optimization, a very bad one is not/very limited.
By following the vehicle for a longer period of time, in combination with algorithms that match on the basis of map material, systematic deviations can possibly be estimated, but it is not possible to arrive at 100% certainty. Adjustment of the original GPS information would deprive the RIS suppliers of the opportunity to develop better algorithms for this themselves. It seems better to indicate in the CAM message which correction service providers deem necessary for the vehicle position.
A service providers typically has access only to data from their own users. Final filtering of redundant data from multiple apps in the same vehicle will therefore only be possible at UDAP or iTLC level. Therefore question is, if it remains useful to apply this to all locations in the chain, or should UDAP or the iTLC do this? This document assumes a centralised option to apply the same functionality multiple times and to ensure consistent behaviour. However filtering this data is relatively complex, since different apps do not deliver data simultaneously and the number of devices varies over time. It is currently unclear how often this problem of multiple apps in a single vehicle occurs and whether there is a proportionality in costs-benefits.
Annex B: TLCConf ASN definition
TLCConf-descriptions {
}
DEFINITIONS AUTOMATIC TAGS ::= BEGIN
ConfigData ::= SEQUENCE {
version Version,
timestamp Timestamp,
stationID StationID,
configuration ConfigurationDataList
}
ConfigurationDataList ::= SEQUENCE SIZE(1..3) OF ConfigurationData
ConfigurationData ::= SEQUENCE {
certifiedProductName CertifiedProductname,
certifiedProductVersionNumber CertifiedProductVersionNumber,
productVersionNumber ProductVersionNumber,
productType ProductType,
manufacturerName ManufacturerName
}
CertifiedProductName ::= IA5String (SIZE(0..32))
CertifiedProductVersionNumber ::= IA5String (SIZE(0..32))
ManufacturerName ::= IA5String (SIZE(0..32))
ProductVersionNumber ::= IA5String (SIZE(0..32))
ProductType ::= ENUMERATED {
tlc (0),
its-cla (1),
ris (2)
}
StationID ::= INTEGER(0..4294967295)
Timestamp ::= INTEGER (0..4294967295)
Version ::= IA5String (SIZE(1..8))
END